‘ ! ! . LLNL-TR-678875

LAWRENCE
LIVERM ORE
NATIONAL

wonrone | Statistical and Machine-Learning
Classifier Framework to Improve Pulse
Shape Discrimination System Design

R. Wurtz, A. Kaplan

October 30, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Statistical and Machine-Learning
Classifier Framework to Improve Pulse
Shape Discrimination System Design

Ron Wurtz and Alan Kaplan
Lawrence Livermore National Laboratory

Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-realized
statistical classifiers rely on a comprehensive set of tools for designing, building, and
implementing. PSD advances rely on improvements to the implemented algorithm. PSD
advances can be improved by using conventional statistical classifier or machine
learning methods. This paper provides the reader with a glossary of classifier-building
elements and their functions in a fully-designed and operational classifier framework
that can be used to discover opportunities for improving PSD classifier projects. This
paper recommends reporting the PSD classifier’s receiver operating characteristic
(ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic
applications.

Keywords: pulse shape discrimination, machine learning, classifiers

0 Introduction

The lead author has worked for years with some code that was written to do pulse
shape discrimination (PSD), which is a variety of statistical classification, and was
written by people unaware of the essential elements of classifier methods. Unlike a
conventional classifier, these codes were unable to report, adjust, or compare
performance in ordinary statistical terms. While designing replacement code built
on ordinary statistical and machine learning principles, it made sense to write this
limited primer on classifiers. The primer is aimed at people learning about ordinary
classifier concepts for the first time, by way of PSD. It is intended to be
comprehensive not in the sense of naming all the possible methods of machine
learning (like neural nets, random forests, etc.) but the elements of a project that
successfully implements a classifier (like feature selection, cross validation, and
confusion matrices).

1 The PSD field

Pulse shape discrimination (PSD) is a variety of statistical classifier. PSD scintillators
are sensitive to more than one kind of particle, and the time-evolution of the pulse of
light created in the scintillator differs with different incoming particles (Wright
1956, Owen 1958, Brooks 1959, Horrocks 1973). The trick is to distinguish the
different pulses of light in order to classify the different kinds of particles. Better
scintillators make better-differentiated pulses, and there is always a hope that
better capture and analysis of the pulses can improve the differentiation regardless

of the scintillator. In the present era, much new work in PSD uses digitized pulses
(e.g- Aleksan et al. 1988). Many tools have accumulated over the years to deal with
digitized pulses and the classifiers that PSD researchers build. Because PSD system
designers build statistical classifiers whether they know it or not, this paper
suggests that the PSD field can easily adopt and adhere to statistical and machine
learning principles.

Any new PSD classifier, or new variation on a PSD classifier, tends to start with the
digitized pulse -- a time series of samples of a pulse -- where the sampling rate is
fine enough to extract the crucial features of a pulse, notably the arrival time, the
energy (size), and the particle type (shape). To “do PSD”, a researcher will typically
acquire a large set of such pulses under controlled conditions. The researcher will
then separate the pulses into two groups - gammas and neutrons - using either a
familiar method from the literature or by inventing a new method. Problems arise
when a pulse’s features fall in a region between the obvious gammas and the
obvious neutrons. Also, digitizer vendors may provide tools that do a first pass to
discriminate pulses (e.g. CAEN’s DPP-PSD package, 2014) but the researcher cannot
stop there: such vendor systems really only remove obvious unneeded events to
reduce dataflow to a manageable level (much like trigger thresholding), and all
collected pulses still require a complete classifier doing true shape discrimination.
New PSD methods appear regularly in the literature. They fall into two general
groups: common sense methods, and methods exploiting statistical and machine
learning tools (see examples of PSD machine learning in Sanderson et al. 2012 and
Yu et al. 2015). If the method is new, the researcher may write it up, describing how
to use it and its capabilities. Sometimes, someone publishes a survey paper
comparing several options for PSD, including the properties of the digitizer, or how
the samples are combined for the discriminator, or the choice of discrimination (see
Flaska et al. 2013 and Soderstrom et al. 2008).

Advances in PSD are weakened by the continual march of common sense
disconnected from convention and rigor. Fortunately, statistical classification is a
well-described field offering convention and rigor. Statistical classification
encompasses not only advances in methods to perform classification, but also
methods to plan for, carry out, and report the classification experiment regardless of
advances. PSD can surely benefit by adopting a conventional approach to
performing experiments to improve PSD classification. This paper describes the
breakthrough of using statistical conventions to build a PSD classifier.

PSD already uses a few statistical conventions. These conventions are followed
inconsistently in research papers. One good reason for the inconsistency is that
these conventions often arose ad hoc for the PSD field and may be fairly weak. An
excellent example is the figure of merit called “FOM”, originally described in
Winyard, et al. 1971, which is an easy-to-estimate separation of gamma distribution
from neutron distribution, normalized by their spreads. Just a few years later, Sperr,
et al. 1974 called the FOM “a rather specious quantity giving no meaningful
indication of gamma-neutron discrimination”. However, FOM persists, partly

because the PSD field has yet to adopt conventional statistical methods. “Gamma
rejection rate” (GRR) is another measure that is reported in one form or another in
the literature by some researchers (Sperr et al. 1973, Mukhopadhyay et al. 2010,
Kouzes et al. 2011). GRR is the rate of gammas misidentified as neutrons, per all
gammas. Interestingly, GRR may be reported on the basis of a fit to a Gaussian for a
distribution that has never been shown to be normal, and almost certainly is not: in
such cases, a certain number of sigma cannot be related to a certain rate of
misidentifications, and so sigma is misleading. This paper will go on to describe
methods for reporting the performance of PSD that are similar to FOM and GRR and
based on a firmer foundation.

There are two main kinds of systems that take a set of inputs and create an output
based on training data. If the output is a continuous variable, the system is called a
“regression” system. If the output is a set of symbolic classes, the system is called a
classifier or classification system (if it covers only two classes, it is a “binary
classifier”, if there are more than two classes, it is a “multiclass classifier”, or “M-ary
classifier”). Just like the PSD systems stretching back into the 1950s, classifiers and
regression systems are first designed, then trained, then run under normal
operation. During normal operation, an electrical pulse is presented to the PSD
system as a “sample” or “query” and the system “predicts” its particle type. In most
early PSD system designs (see for example Gatti and De Martini 1962, and Owen
1962), the first step ran a regression system, which assigned a single value to the
pulse based on a set of inputs, and then a binary classifier converted the estimated
value to a class.

2 Classifiers

The analysis of any classifier problem and the design and implementation of its
solution follow conventional procedures, even if the solution itself is a radical
breakthrough. Classifiers are a subject of continuous study in both the fields of
statistics and machine learning, and both fields use multiple terms to describe the
same concepts. This paper will attempt to use and provide more universal
terminology, though in reality, universal terminology does not exist. Numerous
books, papers, and other materials (e.g. Kennedy and O’Hagan 2001, Ng 2014,
Alpaydin 2004, Minka 2015) guide the perplexed through many classifier
approaches, and those publications are written primarily for others attempting to
move the classifier field forward. Such publications tend to downplay the complete
tasks facing people about to build the classifier, such as the development of essential
elements that support the classifier. (It is interesting to note that, because PSD
researchers have vast sets of pulse data, PSD has gotten the attention of people
interested in trying out new ways of crunching large data sets). In general outline,
the tasks include (with examples drawn from PSD):

Assess the design requirements (for example, the acceptable GRR) and the
design constraints (for example, the maximum rate of events that the system
can handle).

Acquire a large set of events under controlled conditions. These events may
have been acquired in such a way that more information about each event is
available than will be available under normal operating conditions. These
events will be used to develop a quantitative description of the behavior of
the system when presented with pulses.

Choose at least one classification algorithm matched to the characteristics of
the data and the design constraints, with the prospect of meeting the design
requirements.

Implement the algorithm and optimize its performance using the set of
events and acting under the design constraints.

Assess the algorithm’s optimized performance, and report on the
performance and how well it met the design requirements. If this algorithm
includes novel characteristics, its performance might be compared with
other established algorithms.

Note that PSD can suffer if any these procedures, vague as they are, are ignored. In
fact, there are a few essential elements for the development of a classifier, and
employing them all leads to a useful outcome for the whole field. Alternatively, a
partial report on painstaking work may be of little value to anyone until omitted
portions are completed. As of 2015, the next PSD paper that reports on all of the
essential elements will be the first PSD paper that reports on all of them.

3 Essential elements of classifier construction

This paper will now describe the essential elements in some detail. The elements
are described roughly in order of the phases where each first arises. But first, an
aside about the elements of a partial success. The most technically-exhilarating
elements of the project are:

Developing derived features and/or labels (to satisfy constraints or to
improve the ability of the measured features to describe the labels)

Selecting a model (or non-parametric model)
Defining the cost function (or its equivalent)

Selecting the optimizer (often determined by the choice of model and cost
function)

A breakthrough with one of them will lead to partial success, and stopping there will
lead to partial failure. Further, mistaking one element for another (like the model
for the features) may attract partial failure. This paper is about preventing partial
failures by stressing repeatedly the importance of choosing and building and
reporting on all the phases that precede these elements (all the boldface entries
above “model”), and to carefully perform and report on all the following phases that

determine the value of the work (all the boldface entries below “optimizer”). A
conscientious referee will cheerfully reject papers that leave out these essentials.

Design requirements. The design requirements are usually expressed in terms of a
probability of identification or misidentification, and there is an excellent chance
that, if there is more than one requirement, they are mutually exclusive. For PSD, a
design requirement might be the highest acceptable rate of misidentified gammas
per correctly identified neutrons. These kinds of practical requirements contrast
with projects that are intended to determine if there is a more appropriate machine
learning method to apply to a problem. In that case, the requirement is to predict
what the optimal performance could be. Then the community can decide whether or
not the performance is adequate to a design requirement.

Design constraints. The constraints of a design may drive the choice of algorithm
and even drive the designer away from the optimum discrimination algorithm.
Constraints have driven PSD design for a long time, particularly during the analog
era. The most common constraints are space and time and data-rates, and
limitations imposed by the hardware behavior. As an example, all the samples of all
the pulses may overwhelm the readout, requiring compression (almost always
lossy) just to move the data around. The compression itself may be optimized for
the algorithm further down the line, but only if the constraint is known.
Alternatively, the algorithm may be selected based on the knowledge that it is
operating on compressed data.

Training sets. Training sets consist of the kind of information available about each
pulse during the regular operation of the system for a large number of events. These
data should well-represent the data that the PSD system will be operating on. The
training pulses should extend over the full energy range expected, and if a
significant amount of pile-ups, saturated events, MIPs, etc., are expected to be
classified, the training dataset should include them. Training sets are also, in most
cases, augmented with information that is not collected during regular operation for
various reasons. The reasons include constraints during regular operation that
reduced the amount of information available per event. Training sets may also
include information that is extracted by means other than the regular operation of
the system. These datasets are easily processed when formed into a two-
dimensional matrix where each row is an event and the columns are the pieces of
information about the event. This matrix is sometimes called a “design matrix”. The
rows of a design matrix, which for digital PSD are a vector of samples of each pulse
event, are sometimes called “examples” or “instances”, and the columns are called
“features”.

Incomplete data. One element of classifiers that is rare if not nonexistent in PSD
applications is a method for dealing with a training set containing incomplete data.
This problem arises for example in time-series applications. We include this element
only for completeness.

Cleaning. [t is common to “clean out” events preemptively during the regular
operation and during the collection of the test sets. Essentially this means that the
builder already has a crude but effective binary classifier describing events of
interest or of no interest. When using a digitizer, this is as simple as setting the
threshold to retain only the pulses of a certain height, where dealing with the
smaller pulses presents problems of high data-handling rate and noisy impossible-
to-classify pulses. Some digitizers offer a method of flagging pileup pulses, and the
user can decide whether to reject or retain these pulses. It is possible that after
collecting events, the features of certain events will cause them to be flagged as too
hard to deal with, and so the builder will choose to remove them from the training
set, which means that events like them, collected during regular operation, will be
beyond the bounds of the classifier as well, The issue of out-of-bounds data is called
coverage.

Features. The raw data read off the sensor are “features”. In addition to the
samples of the pulse, a digitizer system may report a pile-up flag, peak location,
saturation, etc. Not all the features measured by the system need to become part of
the design matrix. If for some reason a feature is deemed insignificant, it may be
best to remove it, especially if operating under a design constraint. Methods for
discovering significant features are covered by feature learning or feature
engineering.

Transformed feature. If a column in the design matrix is derived from the raw
features, it too is another feature, which this paper will call a “transformed feature”.
Transformed features are commonly used to reduce dimensionality and maximize
linear independence of the raw features. Sometimes a feature is transformed non-
linearly into another feature so that classifier can be dealt with as a linear function.
Another use for derived features is to compress some of the features into a smaller
footprint in order to meet a design constraint. Machine learning often deals with
improving features by reducing dimensionality, making linear functions, increasing
orthogonality, etc. to make the problem “easier”. A somewhat outdated (but still
used) technique for the transformation is “feature engineering”, where the human
chooses a transformation that essentially computes a relatively small number of
features. This approach can be viewed as: “let’s find a small number of quantities
that enable efficient classification.” For example, in the case of pulse features, it is
common to compute the bias from a pre-trigger and remove the bias from the rest of
the samples of the pulse, and, further, compute a “tail-to-total” derived feature that
is easily converted to particle type. The problem with this approach is twofold. First,
you cannot gain information with any transformation of the data (due to the data
processing inequality), so you may be limiting performance right off the bat.
Secondly, those features that a human may think are important to the problem may
not be. The more modern approach is to use lossless transforms that make the data
more amenable for classification. Examples of these include Fourier transforms and
wavelets. Modern classification methods are capable of dealing with the
complexities and size of real data. PSD papers describing a method for using
principal component analysis (PCA), or a method for extracting wavelets (see

Yousefi and Lucchese 2009), are actually describing a way of obtaining transformed
features with the hope of improving compression or improving convergence.
Another variation of transformed features are the outcome of a “generative neural
net”, where the next to last layer is used as the input features to the classifier system.

Label. The information that is to be extracted from the features is called an “output”
or a “label”. Labels are not collected during regular operation (otherwise, the
classifications would be measured directly and no one would need to build the
classifier). PSD labels are at least “neutron” versus “not neutron”. In the case of only
two possible labels, the classifier is a “binary classifier”. If the builder defines other
possible labels (like “pileup” or “MIP” or “saturated”), then the classifier is called a
“multiclass classifier”. The approach of training classifiers using data containing
ground truth labels is called supervised learning. It is important to be aware that
any method of labeling may result in a few mis-labels that will affect the training of
the system (see Sanderson et al. 2012 for a means of estimating mis-labeling). In
PSD, sometimes the events are labeled by time-of-flight methods that are
unavailable during regular operation (time-of-flight labeling has a very low yield,
meaning that to get millions of labeled events, one may need to collect many billions
of events). Sometimes PSD events are labeled by the method of looking for clusters
(see Luo et al. 2010). In the case where training labels are unavailable, techniques
falling under the name of unsupervised learning may be used. The goal of
unsupervised learning is to discover groupings, or clusters, within the training data
without access to ground truth labels. These groups may then be linked to
meaningful labels, or used directly as outputs. It can be difficult, however, to access
the performance of an unsupervised learning method in an unbiased manner, since
here ground truth does not exist.

Validation and test sets. Training sets are further separated into two or three
subsets for test purposes. Testing on the training set would inevitably lead to
exaggerated performance, since the classifier would have the advantage of seeing
the data beforehand (it is possible to build classifiers that perform arbitrarily well
when testing on the training set). Recall that the training set is used to demonstrate
to the algorithm the connection between the features and the labels. In order to test
the trained algorithm, the test set is used to check to see at what rate the correct
label is recovered. In the event that a model will be evaluated compared to another
model (“model selection”), the builder needs a cross validation set (or just
“validation set”) to compete the two models. In the event that the algorithm will be
evaluated on its own, the builder needs only a test set.

Classifier family. The classifier itself is an algorithm that takes a vector of features
and outputs an estimated label. Any classifier may be specified by a decision
boundary in the feature space. In the case of binary classification, this would assign
one of two outputs to every possible input (feature vector). In the training phase,
the training data are used to select a classifier, with to goal of maximizing
performance on new test data (not the same training set). One widely used
approach is to initially select a family of classifiers, such as decision trees, neural

networks, or support vector machines. These families are specified by a set of
parameters. The training phase then selects one classifier by estimating optimal
values for the parameters. It is often difficult to know beforehand which family to
use. Here, intuition plays a large role. Each of the families mentioned constructs
boundaries that look different. For example, decision trees can construct
rectangular boundaries, whereas neural networks can construct boundaries made
up of intersecting lines (polygons). Combinations of these families can also be
considered. Another option rooted in the theory of pattern recognition is to consider
families generated by probabilistic models of the data. In this approach, decision
boundaries are constructed using likelihood ratios between probability
distributions for each class, which are estimated from the data.

A basic result in the theory of machine learning is that the optimal decision
boundary (the one that minimizes the probability of classification error) is
generated by selecting, for a given vector of features, the class maximizing the
posterior probability over all classes (e.g. Devroye et al. 2013). Realization of the
optimal classifier, however, requires knowledge of the underlying probability
distributions, or models, for each class. Motivated by this result, one approach to
designing classifiers is to estimate a parametric or non-parametric model for each
class from training data, and use the estimated models in a “plug-in” decision rule.
Two sources of error can be identified in this regime: systematic errors and
estimation errors. Systematic errors arise from deviations in the form of the chosen
models compared to the true models, while estimation errors capture the deviations
between the estimated models and the best possible models within the chosen form
(this is also known as the bias vs variance tradeoff in statistics). Estimation errors
can be reduced by increasing the amount of training data. These errors can then be
mapped onto the resulting classification error.

Models. Classification systems can be based on a model or not, and a model can be
parametric or non-parametric (e.g. Fukunaga et al. 2013). A model is formally
specified by a probability distribution over all possible data points (samples). In
some cases, parametric models may be derived from underlying physical laws, and
in other cases, they may be purely phenomenological, like templates. In either case,
such a model summarizes the training set more compactly. Once the form of the
model is chosen, its parameters are estimated from training data (see, for example,
The n_TOF Collaboration, et al. 2002). The model with estimated parameters is
sometimes called a “hypothesis function” and the value the hypothesis function
returns for a vector of features is called a “prediction”. One of the central issues
surrounding model selection and fitting is that as the model complexity (number of
parameters) increases, the model fit almost always also increases. Techniques from
model selection (such as the Bayesian Information Criterion) may be used to access
an appropriate level of complexity necessary to adequately capture variations in the
data. Using a model that is too complex may lead to overtraining, causing a
degradation in classification performance. Classifier systems that do not use a model
at all include neural nets and support vector machines.

Optimization. Estimating parameters in the modeling process ultimately reduces to
an optimization problem to meet an objective. (The objective function goes by
many names, including “cost”, “utility”, “loss”, and “payoff” function). The problem is
to maximize the likelihood of the data given the model over parameter values. In
some cases, the resulting optimization problem takes familiar forms, such as a
minimization of a sum of squares (“chi-squared” objective). For example, this
occurs when the data are modeled as a Gaussian random vector with independent
components. Under more complex models (such as mixture models, for example),
the objective function becomes more complex or even intractable for analytic
computation. If this is the case, then sampling techniques exist to arrive at
approximate solutions. Variational methods may also be used to approximate the
objective function by a tractable one (e.g. Jordan et al. 1999). For classifiers that do
not estimate models for each class, such as neural networks and support vector
machines, the relevant optimization is called empirical risk minimization, in which
classification error over the testing set is directly minimized. The tradeoff between
classifier (or classification boundary) complexity and bias in overtraining is
described by Vapnik-Chervonenkis (VC) Theory (e.g. Vapnik et al. 1998). An
optimizer is thought of as very good if it both converges quickly and actually finds
the absolute minimum. If one is building a classifier for PSD, the optimizer’s speed of
convergence may be of minor importance unless a classifier needs to be re-trained
on a timescale shorter than the convergence time.

Threshold. For binary classification problems, optimality may be specified in terms
of detection rate for a fixed false alarm rate (this may also be performed for an M-
ary classification problem by posing it as a sequence of binary problems). In this
case, the optimal form for the classifier is constructed by comparing the log-
likelihood ratio between the two classes to a threshold (this is known as the
Neyman-Person lemma). This type of analysis leads to ROC curves (see “trade
curves” below). A threshold of zero leads to the minimum error probability classifier.
Adjusting the threshold effectively moves the decision boundary and creating a new
detection rate vs false alarm rate operating point. (When the algorithm uses a model,
the objective function’s parameters include both the model’s parameters and other
weighting parameters that describe the cost of misclassification, which include
“regularization”).

Training phase. As noted above, depending on the experiment, there are two or
three phases that use training data. The training phase, sometimes called “learning”
is the optimization phase.

Validation phase. The validation phase is optional and occurs when there is more
than one model to compare the performance of.

Test phase. The test phase is the process by which the tuned parameters are
converted into performance measures, which can be converted into numbers that
can be compared with design requirements. For an already-built system, this phase
can stand alone to provide predictions for a test set to tune operation parameters
and report performance.

Confusion matrix. The confusion matrix is a venerable statistical tool describing
how well the classifier system was able to match the test set to its labels. The
confusion matrix is where the project returns to its source to see if it is capable of
meeting the design requirements. For a binary classifier, the custom is to define the
two labels as “positive” and “negative”, and then arrange the outcomes from the test
set in a two-by-two grid. The correctly-identified examples are called “true” and the
mis-identifications are called “false”, as shown in the following diagram.

True positives | False positives

TP FP

False negatives | True negatives

FN TN

These test measurements can be used to derive experimentally-determined rates of
identification and misidentification. There are a few commonly-quoted rates. This
method of reporting the performance of classifiers is so widespread that different
fields have given the same rates different names. The rate of true positives per all
positives (TP/(TP+FN)) is called the “true positive rate” (TPR), the “detection rate”
(Pdet), and the “recall”, just to name three. If neutrons are “positives” and gammas
are “negatives” (and there are no other options) then PSD’s GRR is FP/(FP+TN), also
called the “false positive rate” (FPR) which is also 1 minus the “specificity”. In the
event that there are N>2 classes, the grid grows to N-by-N, and performance is
assessed by conventional multiclass classifier means (e.g. “one versus rest” or “one
versus one”). [t is important to note that the confusion matrix can change drastically
when the decision boundary moves, meaning that a classifier system does not
produce a single confusion matrix, but a family of matrices that is better
characterized by the trade curves.

Trade curves. It should be fairly obvious that one can set a misclassification
parameter (commonly represented by the “threshold” in PSD) in such a way that
GRR seems to be reduced to zero. In the real world, when GRR or FPR goes not to a
small number but to zero, the boundary between the positives and the negatives has
moved to a place where no sample is classified as a “positive”, causing TPR also to
drop to zero. If TPR is required to be greater than zero (almost a certainty) then the
trade between FPR and TPR is a “multi-objective optimization” problem, and the
trade behavior is summarized in a curve of FPR versus TPR parameterized by the
location of the boundary. That specific curve is called a “ROC curve”, and it
represents a small family of informational curves called “trade curves”. These curves
describe the trades that occur in the confusion matrix as misclassification
parameters are swept from one extreme to the other (note how Sanderson et al.
builds a ROC by varying the ratio of C. to C.). Another very common trade curve is
the precision-recall curve, or “P-R curve”. The ROC curve depends only on the
internal rates within the distributions of the positives and negatives. The P-R curve,
because “precision” is defined as TP/(TP+FP), depends on knowing the relative

10

rates of positives and negatives, since TP are actually positives and FP are actually
negatives. If the expected normal operation rates are different from the rates in the
test set, the numbers TP+FN (i.e. all neutrons) and FP+TN (i.e. all gammas) must be
scaled to the expected positive and negative rates. Such scaling changes the P-R
curve. The trouble with precision is that it is highly sensitive to the ratio of positives
to negative in the sample data. In many cases, the number of negative samples is
much higher than positive samples. This imbalance is heavily abused in the
literature and requires careful treatment.

ROC curve

T T T LR T T T

L5010 o e s s s s LA s e

-
=}

||III||IIIHIII|HIIIHII|HIIIHI1—

400
0.9

300

0.8

occurrences

200

0.7

probability of neutron ID'd as neutron

100

IIIIIIIIIIIIIIHIII|HIIHIII|HIIHIIIE

7 vl v vl vl
0.05 0.10 0.15 0.20 0.25 0(55.0001 0.0010 0.0100 0.1000 1.0000
shape score probability of gamma ID'd as neutron

o
8
]

Figure 1: On the left are simulated distributions of gammas’ pulse shape scores (in the taller peak) and
the neutrons’ pulse shape scores (in the shorter peak). The ROC curve on the right is derived from the
distributions on the left, and shows a case where it is hard to balance ideal mis-identification rates. In
this simulation, 40% of neutrons are lost if the gamma rejection rate is 1:10,000.

Figure of merit. PSD already has a figure of merit. In the ideal case that the
distributions of gammas and neutrons are normal distributions, the FOM is a
reasonable summary of performance for comparing among fundamental design
choices. However, in the real world, it is preferable to remove the assumption that
the distributions are normal and instead report the ROC curve. To reduce the
performance to a single figure, the ROC curve has a summary statistic called the
AUROC, for “area under ROC”, that is similar to the FOM (because AUROC increases
for better separation of the distributions) and not bound to normal distributions.
The P-R curve has a statistic known as “F1” that is maximum at a combined best
precision and recall (depending on the evaluator’s needs, the F-statistic can be
weighted toward P or R). Another statistic is the “equal error rate” (EER), the value
of Pra where Pra = 1 — Pger. Often the chosen figure of merit depends on the culture of
the community in which results are published. The AUROC, maximum Fy, and EER -
and for that matter, the FOM - fail to describe the low-GRR regime, because they
describe a capability in regimes where the costs of gamma and neutron
misidentification are roughly equal. For practical PSD purposes, systems sensing
fast neutrons often require an unequal trade between TPR and FPR that results in
extremely low GRR and hopefully not very low TPR. To summarize, a single figure of

11

merit has trouble representing performance except relative to another combination
of scintillator, digitizer, and classifier algorithm (e.g. Pawetczak et al. 2013).

This paper recommends that future published PSD reports always include the ROC
curve, because of the challenge of multi-objective optimization, along with the FPR
(GRR) and the TPR at a representative low-GRR threshold, say GRR=1e-5. (1e-5
seems natural when particles are dominated by gammas and the total particle
detection rate is near 1e6/sec - that leads to approximately one misidentification
per second). Further, since the very low GRR regime is often the most interesting,
the ROC curve should be plotted logarithmically in GRR. (For work whose design
requirements are sensitive to populations of mis-identified gammas among the
neutrons, it may also be helpful to present a P-R curve.) Be aware that claims of one-
in-a-million for GRR require a few million examples in the test set, and claims of GRR
= 0 are impossible to make, and instead a bound must be stated, i.e. GRR <
1/(FP+TN). A further complication arises at low signal-to-noise: the performance
degrades as a function of energy. See the “energy dependence” discussion below.

Prediction. Finally the entire project is put into action in normal operation. As
each new pulse (sometimes called a “query” or “test instance” or “sample”) arrives,
its raw features are converted to the features used by the classification process, and
the model and its optimized parameters operate on the features to perform a
“prediction” to classify the pulse.

4 Specific challenges for PSD classifiers

4.1 Energy dependence

There are a few PSD-specific challenges relevant to classifiers. The first issue has to
do with the increase in signal-to-noise in the digitized pulse with increasing energy,
meaning that high energy pulses have distinct shapes by particle types, while the
particle types of low energy pulses become less distinct with decreasing energy. It is
common to solve this problem by creating subregions by energy, and training
separate classifiers for each subregion. It is obvious that each subregion will have a
different trade curve, and so if one value of TPR is selected as a condition of
operation for the whole PSD system, then each energy subregion will have a
different FPR. It is possible to construct a single classifier that works over all energy
regions. It would “know” that lower energy regions are harder to separate. One
approach is to use a bank of classifiers by designing of a set of differently-labeled
subregions, or by using a decision tree.

4.2 Multiple detectors in one system

The second issue deals with a dilemma similar to the energy subregion problem.
When using several scintillator/PMT/digitizer assemblies, each assembly will have
slightly different performance. Here again the ROC curves will be different and the
operator will have to make a decision about the tradeoffs to satisfy design
requirements.

12

4.3 Pile-ups

Pile-ups lead to yet another similar problem. When the system is in the presence of
a high rate of particles (typically gamma rays), two or more consecutive overlapping
pulses, called “pile-ups”, become a significant classification issue (note that Kaplan
et al. 2013 started looking at this problem). Many of the lowest-energy gamma rays
do not trigger the system, and are even incapable of triggering the digitizer’s pile-up
flag because they do not represent a tall-enough or steep-enough edge similar to the
normal trigger. However, an undetected pile-up or two following a gamma creates
an excess of light in the later portion of the pulse, making it similar to a neutron
pulse with an excess of delayed light. For the classifier, this means that the rate of
borderline pulses goes up, and the misidentification rates represented by the
confusion matrix are different for different pile-up conditions. Making the problem
harder, it may be impossible to perform supervised labeling of unflagged pile-ups
because if we could have flagged them, we would have. If the analysis relies on a
predicted rate of false neutrons, the rate has to be predictable. The simplest solution
is to obtain the training data under the same rate of pile-up as the data during
regular operation, though that solution is seldom easy in practice.

4.4 Comparison across systems

Finally, PSD has always suffered from the problem of comparison across systems.
Anyone wanting to report on the performance of a new component must insert it
into a combination of scintillator / electronics / algorithm, where it will be difficult
to isolate that component’s contribution to the figure of merit, and impossible to
compare it with another researcher’s published performance. A new FOM may be
proposed (e.g. Soderstrom et al. 2008 or Flaska et al. 2013) to bring out one or
another characteristic of performance - or even be incorporated into a cost function
- and yet a new FOM will probably be monotonic with the established FOM, and still
does not solve the problem of universal comparison. We offer no solution to this
problem (though, if pressed, this paper would say to cite TPR at GRR=1e-5),
however, it is important to acknowledge that there is a problem of scoring in PSD
that might be solved by talking things over with a statistician or signal processor.

5 Conclusion

PSD is an ideal field for developing robust new classifiers using convention and rigor,
and PSD researchers should explore and exploit the wealth of classifier methods
whenever they can. This paper presented a primer of the elements of a fully-realized
project to design, build, implement, and report performance for a classifier, with
examples from PSD. This paper also recommended reporting the PSD classifier’s
ROC curve and its behavior at low GRR, in order to define the performance of any
proposed new PSD method. The authors remind the reader that each of the
elements in this brief paper represents several huge discussions, many of them
taking up entire semesters - the paper raises awareness of all the elements, and
cannot be relied on to explain how to carry them out. A high-level statistical
software package may provide a useful entry to learn about the options for the
various elements and to prototype a complete classifier system as laid out here. The
authors expect that the reader immediately and enthusiastically runs to the

13

computer or lab and rebuilds a PSD project along conventional classifier lines to
produce a thing of beauty.

Acknowledgements

Over the years, RW had numerous discussions with Karl Nelson, Jim Candy, Vera
Bulaevskaya, Mike Zelinski, and Kristin Lennox who carefully explained very simple
concepts repeatedly until he partially understood them. RW also benefited from
talking about Jason Newby and Jerome Verbeke’s PSD algorithm with Serge
Ouedraogo, from Nathaniel Bowden regularly giving him difficult-to-parse PSD
papers to read, from Andrew Glenn’s requests to make the most of digitizer
compression, and from requests by Les Nakae and later Gary Guethlein to provide
conventional statistics describing the performance of a PSD system. This work was
performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

R. Aleksan,]. Bouchez, M. Boussicut, T. Desanlis, D. Jourde, J. Mullié, F. Pierre, L.
Poinsignon, R. Praca, G. Roussel,].F. Thomas, “Pulse shape discrimination with a 100
MHz flash ADC system”, 1988, Nuclear Instruments and Methods in Physics
Research A:, Volume 273, Issue 1, 1 December 1988, Pages 303-309

E. Alpaydin, 2004. “Introduction to Machine Learning” MIT Press, 2004.

F. D. Brooks, “A scintillation counter with neutron and gamma-ray discriminators,”
Nuclear Instruments and Methods, vol. 4, no 3, Apr. 1959, pp. 151-163.

CAEN corp. DPP-PSD Digital Pulse Processing for the Pulse Shape Discrimination.
Available: http://www.caen.it/csite/CaenProd.jsp?parent=39&idmod=770
retrieved 2014.

L. Devroye, L. Gyorfi, G. Lugosi. A Probabilistic Theory of Pattern Recognition. Vol. 31.
Springer Science & Business Media, 2013.

M. Flaska, M. Faisal, D. D. Wentzloff, S. A. Pozzi “Influence of sampling properties of
fast-waveform digitizers on neutron—gamma-ray, pulse-shape discrimination for
organic scintillation detectors”, Nuclear Instruments and Methods in Physics
Research A:, Volume 729, 21 November 2013, Pages 456-462

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic press, 2013.
E. Gatti and F. De Martini, "A new linear method of discrimination between

elementary particles in scintillation counters, Nuclear Electronics"”, vol .2, IAEA
Vienna, 1962. pp 265-276.

D. L. Horrocks, “Applied Liquid Scintillation Counting,” in Liquid Scintillation
Counting, volume 3, Crook, M. A. and Johnson, P. eds. Heyden, London. pp 3-20, 1974.

14

M. I. Jordan et al. "An Introduction to Variational Methods for Graphical Models."
Machine learning 37.2 (1999): 183-233.

A.C. Kaplan, M. Flaska, A. Enqvist,].L. Dolan, S.A. Pozzi, “E]J-309 pulse shape
discrimination performance with a high gamma-ray-to-neutron ratio and low

threshold”, Nuclear Instruments and Methods in Physics Research A, Volume 729,
21 November 2013, pp 463-468

M. C. Kennedy, A. O’'Hagan, “Bayesian Calibration of Computer Models” 2001. J. R.
Statist. Soc. B. 63, part 3, pp 425-464.

R. T. Kouzes,].H. Ely, A. T. Lintereur, E. K. Mace, D.L. Stephens, M. L. Woodring,
“Neutron detection gamma ray sensitivity criteria”, Nuclear Instruments and
Methods in Physics Research A, Volume 654 (2011) pp 412-416

X. Luo, G. Liuy,]. Yang “Neutron/Gamma Discrimination Utilizing Fuzzy C-Means
Clustering of the Signal from the Liquid Scintillator” 2010 First International
Conference on Pervasive Computing, Signal Processing and Applications, IEEE

T. Minka, “A Statistical Learning/Pattern Recognition Glossary”. Retrieved 2015.
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/

S. Mukhopadhyay, J. Glodo, R. Hawrami, U. Shirwadkar, E. van Loef, W.M. Higgins, A.
V. Churilov, K.S. Shah, “Detection of Nuclear Material with Dual Neutron-Gamma
Detector”, IEEE International Conference for Technologies on Homeland Security,
2010, pp 404-409

The n_TOF Collaboration, S. Marrone, D. Cano-Ott. N. Colonna, C. Domingo, F.
Gramegna, et al, “Pulse shape analysis of liquid scintillators for neutron studies,”
Nuclear Instruments and Methods A, vol. 490, Sept. 2002, pp. 299-307

A. Ng, “Machine Learning Course”. Coursera Online Courses, retrieved 2014,
https://class.coursera.org/learn/machine-learning

R.B. Owen, “Decay Times of Organic Scintillators”, IRE Transactions on Nuclear
Science, 1958, NS-5, 198-201

R. B. Owen, “Pulse Shape Discrimination - a Survey of Current Techniques” IRE
Transactions on Nuclear Science, Volume 9, Issue 3, 285 - 293 June 1962

[. A. Pawelczak, S. A. Ouerdraogo, A. M. Glenn, R. E. Wurtz and L. F. Nakae, “Studies of
neutron-gamma pulse shape discrimination in EJ-309 liquid scintillator using charge
integration method,” Nucl. Instr. Meth. Phys. Res. A 711, 21, 2013.

T. S. Sanderson, C. D. Scott, M. Flaska, J. K. Polack, and S. A. Pozzi , “Machine Learning
for Digital Pulse Shape Discrimination,” Proc. IEEE Nuc. Sci. Symp., p 199-202, 2012.

15

P.-A. Soderstrom, J. Nyberg, R. Wolters, "Digital pulse-shape discrimination of fast
neutrons and gamma rays," Nucl. Instr. Meth. A, 594, 79-89, 2008.

P. Sperr, H. Spieler, M.R. Maier, D. Evers, “A simple pulse-shape discrimination
circuit”, Nuclear Instruments and Methods, Volume 116, Issue 1, 15 March 1974,
Pages 55-59

V. N. Vapnik, V. Vapnik. Statistical Learning Theory. Vol. 1. New York: Wiley, 1998.

R.A. Winyard, J.E. Lutkin, B.W. McBeth, “Pulse Shape Discrimination in Inorganic and
Organic Scintillators. I”, Nucl. Instr. and Meth., 95 (1971), p. 141

G.T. Wright, “Scintillation Decay Times of Organic Crystals” Proc. Phys. Soc. B 1956,
69, 3, 358-372.

S. Yousefi, L. Lucchese, “Digital discrimination of neutrons and gamma rays in liquid
scintillators using wavelets,” Nuclear Instruments and Methods A, vol.598, no. 2, Jan.
2009, pp. 551-555.

X. Yy, J. Zhy, S. Lin, L. Wang, H. Xing, C. Zhang, Y. Xia, S. Liu, Q. Yue, W. Weij, Q. Du, C.
Tang “Neutron-gamma discrimination based on the support vector machine
method”, Nuclear Instruments and Methods in Physics Research A:, Volume 777, 21
March 2015, Pages 80-84.

16

